\%rigireconcerso چحكيـه
اين نوشته، فصل دوم يا پيشينه پزوهشى یی پاياننامه كارشناسى ارشد در رشته تدريس با گرايش تدر يس رياضى در دوره متوســـطهٔ اول از گروه رياضى دانشگًاه نبراسكا و به راهنمايى جيهم لوئيس است. در اين بررسى، پزوهشگر روشهاى مختتلف ضرب و علت درست بودن آنها را از نظر رياضى، بيان كرده
 در كلاس درس، مفيد واقع شود.

كليدوازْها: عمل ضرب، انواع روشهاى ضرب، دوره ابتدايى، دوره متوسطهٔ اول

در آمريــــا، الگُوريتم اســـتاندارد تدريس ضربِ اعداد

 مىشوند. اين روش، متكى بر به خاطرسپارى حـى حقايق مربوط

 روشهاى سنتى ترجيح مىدهند.

ضرب با انگَشتان ${ }^{9}$
 انگشتان براى محاسبه حاصل روشها كه آن را به ايتاليا نسبت مىدهند، بهطور گسترده

ضرب، يكى از چهارٍ عمل اصلى محاســـباتى در دوره
 اگرچه اين تعريف در ضرب اعداد حسابى بهكار مىروود، اما

 يا فرايندى كه حاصل ضرب دو عدد را محاســــبه مى كنـد،
 وجود اين اختلافنظرها، ضرب بــا هـا هر تعريفى كه در در نظر

 سطوح بالاتر، ايجاد مى كند.

كامل در اســتفاهه از جدول ضرب ندارند، روش مؤثرى به حساب مىآيد. همرحنين، معرفى اين روش به دانشا دآموزان

 رياضى محسوب میشود (NCTM)،

مدل مساحتى ضرب"

 به منظور ساخت مغاهيم جديدي، همه دانشى آموزان بايد بين ايدههاى رياضى و مفاهيمى كه قبلاً آ موختهاند، ارتباط

 يا براى ضرب كسرها مانتوان استان استفاده كرد).

$1 f \times 1 T=[(1 \circ+r) \times 10]+[(1 \circ+r) \times r]$
$=(10 \times 10)+(Y \times 10)+(10 \times Y)+(Y \times Y)$
$=100+r_{0}+\mu_{0}+\lambda=100+90+\lambda=19 \wedge$

به دليل محدوديتهاى مدل مساحتى، نمىتوان از آن، براى ضرب اعداد كنگت اســتفاده كرد. اما دا در هر هر صورت اين اين

 كرد. مثال زير، ضرب نشانمىدهد:

 حاصل مدل مساحت، خاصيت توزيعيذيرى ضرب را به خوبى نشان

در قرون وســطى، در سراسر اروپيا مور استفاده قرار كرفته

 انجام مىشود:

$$
\text { كنيد. ه } 0=0 \text { | } 0 \times
$$

$\Lambda \times V$

 جاى عددهاى هشــت و هفت، به ترتيب x و y را جايتزين ين كنيد:
$1 .[(x-\Delta)+(y-\Delta)]+[(1 \circ-x)(1 \circ-y)]=$ $10 x-\Delta_{0}+10 y-\omega_{0}+100-10 x-10 y+x y=$ $12 x-a_{0}+1 / y-\omega_{0}+100-12 x-1 / y+x y=x y$
 ($\alpha-y, \Delta$
 عبارتها به جز xy x حذف میشـــوند، معادلــهـه مورد نظر، حاصلضرب x و y را نتيجه میدهد.

 نيست و بدين ســبب، براى دانشآموزانى كه هنوز تسلط

 دهكان، رقم صفر كَاشته میشود.)

$\Delta x Y=Y$ 。
$\Delta \times \Delta=r \Delta$
$\Delta \times \mu=1 \Delta$
(

مى دهد. اگر فرصتــــــ ايجادكنيم تا دانش آموزان، بتواند با با
 اســت، مىتوان خاصيت جابهجايى

 بيشتر بصرى (ديدارى)" است، استفاده كرد.

ضرب شبكهاى

به گوشه سمت چֶ پاييين آن رسم كنيد.

هستند.

> مدل مساحتـي
> ضرب، روشىي است كه بهعنوان
> يكـبازنمايـين،
> فرايند ضربـنـئ را
> توصيفـمى
> و در ايجاد
> ارتباط بين جبر
> و تفكر جبرى،
> به دانش آموزان
> كمكـمىكند

برخی استدلال مى كنند كه اين الكُوريته، ارزش مكان مكانى

در نتيجه، مىتوان اين ضرب را باصورت زير نمايش داد: $(Y \circ \times \not \circ \circ 0)+(Y \circ \times \Delta \circ)+(Y \circ \times Y)+(\Delta \times \not \circ \circ \circ)$
$+(\Delta \times \Delta \circ)+(\Delta \times r)=11$ Kr
ضرب اعداد بزر گتر از يك رقمى، بر سه مر مرحله ضرب،
دسته بندى دوباره انجام میدهدي، بلططورى كه دانشي آموزان مىتوانند بر معنى و مفهوم هر مرحله از فرايند، تمر كز كنند.

$9000+1900+r 90+1 r=V 000+900+r 90+1 r$

=VAVY
بنابراين، T49×Y
اين روش جواب مىدهد زيـــــرا قطرهايـى كه از تقاطع خطوط به دست مى آيند، بهعنوان ارزش مكانى يا يا مكانياب (يكان، دهكان، صدكان و . . .) به كار مى مروند و تعداد نقاط

 دو عدد دو رقمى مانند توجه نمود كه مسئله رامى توان بهصورت (Y (Y

$K\langle\times 1 \mu=(\mu \circ+\mu) \times(10+\mu)$
$=(Y \circ \times 1 \circ)+(Y \circ \times Y)+(Y \times 1 \circ)+(Y \times r)$

توجه داشته باشـــيد كه چهار مجموعه نقاط باصورت قطرى با هم جمع مى شوند. در واقع، نقاطى كه ارزش مكا مكانى يكســـانى دارند، با هم جمع مىشـــــــند (در شكل، بر جستـه

اين الكَوريتم خاص، فهم ديــــارى ياديَيرندكان را الز

 همرحنين، دانشآموزان بايد توانايى توصيف روش استفاد اديا شده را داشته باشند و بدانند كه براي حل حل هر مسئله خاص،
 دی

 بزر تى بهكار رود، دردســر زاســت، ولى براى دانشآموزان

اين روش، به دانشآموزان ساختارى براى فكر كردن و و ثبت
 براى ضرب كسرهاىاعشارى و چچندجملهاى ها، كسترش دان داد.

ضرب خطى"

 ضرب، توانايى ديدارى خود را ا از فرايند ضربيّ، بالا مى بريرند. فرض كنيد مى خواهيد

كنيد كه براى نمايش بآ، دوخط در سمت راست راست و دو خط

 خط در بالا و سه خط در إيين قرار گيرند (خطوط آبى).

Y. توجه داشــته باشــيد كه هـهار مجموعـــها از نقاط تقاطع وجود دارند (برجســـته شدهاند) كه بهر براى پيدا كردن

 قطرى، با هم جمع كنيد.

جواب، اين روش نتيجه مىدهد، زيرا در آن، دايرههاى نمايش

 مناسب -ارزش مكانى -، به كار میروند.

از مزاياى اين روش اين است كه مىتوان بدون دانستن جدول ضرب، از آن استفاده كرد. ممكن است اين اين روش ضر اين

 اندازه عامل هاى ضرب، سختر ور و سخت الگوريتم را مىتوان بهعنــــوان يكى از چپندين روش موجود
 نبايد تنها بر اين روش، تكيه كنند.

ضرب با نوار كاغذى

موجود است، نوشتن عددها روى نوارهاى كاغذى رایى بها اســت كه ترتيب رقمهاى يكى از عامل هاى ضرب را را تغيير

دهيمه و بعد، يكى سرى ضربهایى يكـرقمى انجام دهيهم.

نشان مىدهيم:

بنويسيد، ترتيب رقمهاى يكى از عامل ها را را برعكس كنيد
. (4 HT \rightarrow HMY)
 برعكس نوشـــته شده، در قسمت بالاى سمت راست عامل
ديگر قرار گَيرد.

ب. كاغذها را طورى تنظيـــم كنيد كه اولين رقم عدد جديد بالايى -عددى كه ترتيب رقمهايش عوض شـي

كممســن و آنهايیى كه هنوز در جدول ضرب مهـارت كافـى

 بهترى از فرايند ضرب دو عدد، به دست خواهند آورد.

ضرب دايره/ شعاع ${ }^{11}$

 مدلسازى عامل اول ضرب و چچهار شعاع بهعنوان عامل

نتيجه مى گيريم كه

نشان مىدهيم كه اين الگَوريتم براى اعداد بزر گَتر، كمى پیحییده است:

سمت چپ رسم كنيد.
 كنيد.

 بشمار يد و بهصورت قطرى، با هم جمع كنيد رايد

يكى ديگر از روشهايـى كه برای الجام عمليات ضرب موجود است، نوشتن عددها روى نوارهاى كاغذى بهطورى است كه ترتيب رقمهاى يكى از عاملهای ضرب را تغيير دهيم و بعدا، يك سرى ضربهای يكـرقمى انجام اين الثَور يته، میتواند برای كسانى كه به استفاده از ابزار ملموس برایى فاشهمهيدن درارند، جذابي باشد

شواهد موجودى در إططه بانجام مملياتر رياضى از جمله

 مصر باســـتان برمى گردد كه در آن، نيازى به بـن حفظ كردن

 ا. ابتدا دو ســـتون از اع اعداد بســـــازيد، در ستون سمت
 از عامل هاى ضرب (معمولا بزر گَترين عامل) را را بنوسيد.
 Y

كوچكـتر يا مساوى عامل دوم ضرب شود.

اما ســـؤال اين اســت كه چچگَونه برعكس كردن رقمها

 نظر بگيريد.
وقتى كه دو روش كنار هم نوشـــتـه مىشــــــــنـ، معلوم

 ترتيب انجام مراحل، تفاوتى در جواب نهايى ايجاد نمى كند.
بـــا وجودى كـــهـ روش ضرب مصرى، شــامل مراحل
بيشترى نسبت به الگَوريتم ضربهاى متوالى است، برترى
كليدى آن براى استفادهكنندگًان اين است كه تنها دانستن
حاصل ضرب يك عدد در Y كافى است. از اين گَذشته، اين
روش مىتواند بهعنوان داربســـتى براى دانشآموزانى عمل
كند كه هنوز، تسلط كافى در دانستن و بهكار گيرى اصول
پايـــهاى ندارند. همرچنـين اين الگَوريته، مى تواند به گَونهاى
در كلاس درس معرفى شـــود كـــه دانشآموزان را به بحث
در مورد مفهوم ضرب، فراينـــد و پرايى اجراى آن هدايت
كند. براى مثال، دانشآمـــوزان مىتوانند اين روش ضرب
و روش ضربهاى متوالى ســنتـى را با همم مقايسه كنند و
چگگَنگگى رسيدن به پاسخ درست را در هر دو روش، توضيح
دهند. معرفى الگَوريتمههاى گوناگون ضرب به دانشآموزان،
باعث بالا بردن در ك مفهومى آنان مىشود و همانطور كه
پ夫وهش گر برجسته آموزش رياضى لى پينگ ماT (1999،
ص (I I) بيان كرده، „وقتى كه يك مســئله با روشهاى
چند گانه حل مىشود، مىتوان از آن طريق، چچندين بخش
از دانش رياضى را به همم گره زد."

روش »ضرب دهقان روسى"٪
اين روش، نوعى از الگَوريتم ضرب مصر مصرى است كه به به

 براى به دســت آوردن حاصل

 فرايند »ضرب دهقان روسى"، نشان داده شده است است

نظر بگيريد.
ז. ب. بهطور مكرر، عدد ستون سمت چپ رپ را آنقدر نصف
كنيد و باقيماندههاى تقســيمر را حــــن كنـيد تا به عدد ا

 دارند، حذف كنيد.

$$
\begin{aligned}
& r \wedge \times 4 \varepsilon=(4+\lambda+18) \times 4 \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& =\left(r^{r} \times \varphi \varphi\right)+\left(r^{r} \times \varphi \varphi\right)+\left(r^{\dagger} \times \varphi \varphi\right) \\
& =1 \Lambda \varphi+r \varphi \Lambda+V r \varepsilon=1 r \wedge \Lambda
\end{aligned}
$$

مىدهنند. در حالى كه عددهاى ســـتون سمت راست،
 بزرگترين توان
r.

^ 1 است.
(f
f
در نتيجه،

 جمع كنيد. $1 \Lambda 4+Y \xi \Lambda+V Y \xi=1 Y \Lambda \Lambda$

اين مهم است كه بدانيهم چرا ا اين روش نتيجه میىدهد. اين الگوريته، بر مبناى خاصيت توزيعيزي

 زير، جرح و تعديل نمود:

[^0]\[

$$
\begin{aligned}
& \text { معرفى } \\
& \text { الگَوريتمههاى } \\
& \text { گوناگَونِ ضرب } \\
& \text { به دانش آموزان، } \\
& \text { باعث بالا بردن انـن } \\
& \text { درك مفهومىى آنان } \\
& \text { مىشود و همانطور } \\
& \text { كه پڭوهش وشر } \\
& \text { برجستـه آموزش } \\
& \text { رياضى لى پیينـگَ ما } \\
& \text { بيان كرده، >وقتى } \\
& \text { كه يكـ مسئله با } \\
& \text { روشهاى چچندگانه }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { مى توان از آن } \\
& \text { طريت، پـندين انـ } \\
& \text { بخش از دانش } \\
& \text { رياضى را به هم } \\
& \text { گره زد." }
\end{aligned}
$$

توانهاى دو	ros	r^{*}	r ${ }^{+}$	r	Y	ro	r°
10	rr	19	\wedge	f	r		1
نمايش در مبناى دو	1	。	1	1	1		。

در مبناى دو ولى بهصورت برعكس، نشان دهدي．

．	$\cdot \times 1$	4	＊A
1	${ }_{1 \times 1}$	Hr	07
r	$1 \times \varepsilon$	11	Ur
r	1×1	。	rys
ε	1×17	＊	ten
	$1 \times \mathrm{HY}$	1	197
			1 rM

با اضافه شدن دو ستون، به وضوح مى توان ارتباط بين اين الكَوريتم و نمايش اعداد در مبناى دو（IXY）را دادي：
$\mu_{9}=(101111)_{r}=\left(1 \times Y^{\Delta}\right)+\left(0 \times Y^{+}\right)+\left(1 \times Y^{r}\right)$
$+\left(1 \times Y^{r}\right)+\left(1 \times Y^{\prime}\right)+\left(\circ \times Y^{\circ}\right)=r r^{\circ}+\lambda+Y+Y$

 اعداد فرد در ســتون عـــد
 آوردن حاصلضرب، نقش دارند．

ضرب هندى
رياضيات هندى، ريشه در هند بالد باستان مارد كه در متون

 دســت آوردهاست．سوترا داراى حدود با زا زير مجموعه است كه مبناى دستگاه شمار رياضيات هندى را تشكيل میى آندهند

 Y
 رقمهاى سمت راست را باصورت عمودى ضرب كنيد．

هـ عددهاى حذف نشده در ستون سمت راست را با هم جمع كنيد تا حاصلضرب به دست آيد． $\Delta 9+11 T+Y Y q+\Lambda 99=1 T M \Lambda$

> بنابراين،

 استفاده از مراحل زير، به دست آوريد：

 يكى يكى افزايش يابند．

 اســت، پيدا كنيد．تون عدد 19 ا براى 1 ا 1 مناسب نيست،

براى دومين رقم در مبناى دو، عدد صفر را با بنويسيد．

$$
\text { كم كنيد كه } 9 \text { مىشود. }
$$

$$
\text { a. بزر كـتريـــن توانى از بَ را كه براى عدد } 9 \text { مناســب }
$$

$$
\text { اســت، پيدا كنيد، چون ¢ براى عدد } 9 \text { مناسب است، براى }
$$

$$
4 \text { كم كنيد كه r مىشود. }
$$

است، پيدا كنيد، چون
 را بنويسيد．عدد r را ااز دو كم كنيد تا باقىىمانده صفر شود V V．

باقىمانده در مبناى r ، عدد صفر را قرار دهيد． ســسِّ دو ستون ديگر از اعداد، به جدول اصلى اضافـهـ

اين الگَريتهم بر مبناى خاصيـت توزيعپذيرى ضرب
مى
در ضرب اعـــداد بزر گتتر، به همان الگـــوى قبلى، دو
 ｜ستفاده كنيد：

 دستدبندى شدهاند．

بنابراين،

「．بهصورت ضربدرى عددهــــا را در هم ضرب كنيد و
حاصل را جمع كنيد：

K＇と人
ايـــن عدد، رقم دهكان حاصلضرب را نشـــان مىدهد （توجه داشته باشيد كه عدد ا، بايد به مكان صدگان انتقال

پيدا كند．）
 كنيد، و حاصل را باعددهاى انتقال يافت الته جمع كنيد تا رقم صدكان حاصلضرب، به دست آيد．

$$
\begin{array}{lll}
\binom{r}{r} & r \\
\hdashline & r \\
i & & \\
v & 9 & 1 \\
v & 9 & \hat{1}
\end{array}
$$

بدين ترتيب، MYx

اين الكَوريتم، مىتواند براى ضربهـي

 دانشآموزان دوره اول و دوم دبيرســـتان از اين روش ســـاده و ميانبر، براى يافتن حاصلضرب استفانـان مى كـنـند

 كردن اين روش داشــتـه باشيم．ابتدا با استفاده از از خاصيت توزيعپيرى ضرب مسئله قبل را دوباره مىنويسيم：

K $\mathcal{K} \times \mu=(Y \circ+Y)(\mu \circ \times Y)$
$=(Y \circ \times Y \circ)+(Y \circ \times Y)+(Y \times Y \circ)+(Y \times Y)$
$=\xi \circ \circ+r \circ+1 r \circ+\lambda=\xi \circ \circ+1 \varepsilon \circ+\lambda$
$=\mathrm{V} \circ \circ+9 \circ+\Lambda=\mathrm{V}$ я \wedge
توجه داشته باشـــيد كه قسمتهاى برجسته شده در در
مسئله با الگَوهاى عمودى و ضربدرى در ار تباط هستند．

（Fxr）

$\left(r_{0} \times r\right)+\left(r \times r_{0}\right)$
17. Line Multiplication
18. Circle/Radius Multiplication
19. Paper Strip Multiplication
20. Egyptian Multiplication
21. O’Connor \& Robertson
22. Laping Ma
23. Russian Peasant Multiplication
24. Bogomolny
25. Binary System
26. Vedic Multiplication
27. Sri Bharati Krsna Tirthaji
28. Sutra
29. Nataraj \& Thomas
30. Vertically and Crosswise Sutra

1. Bogomolny, A. (2011). Peasant multiplication. Retrieved June 10, 2011, from www.cut-the-knot.org
2. Carroll, W. M., \& Porter, D. (1998). Alternative algorithms for whole-number operations. In The National Council of Teachers of Mathematics, The teaching and learning of algorithms in school mathematics (pp. 106-114). Reston, VA: The National Council of Teachers of Mathematics, Inc. 3. Gray, E. D. (2001). Cajun multiplication: A history, description, and algebraic verification of a peasant algorithm. Louisiana Association of Teachers of Mathematics Journal, 1(1), article 6. Retrieved fromhttp://www.lamath.org/journal/Vol1/cajunmultiplicationfinal.pdf
3. Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
4. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
5. Nugent, P. M. (2007, September). Lattice multiplication in a preservice classroom. Mathematics Teaching in the Middle School, 13(2), 110-113.
6. O’Connor, J. J. \& Robertson, E. F. (2011). An overview of the history of mathematics. In The MacTutor history of mathematics archive. Retrieved June 9, 2011, from School of Mathematics and Statistics, University of St Andrew Scotland website:
http://www-history.mcs.st-and.ac.uk
7. Princeton University "About WordNet" (2010). Retrieved June 9, 2011, from http://wordnet.princeton.edu
8. Rouse Ball, W. W. (1960). A short account of the history of mathematics (4th ed.). Mineola, NY: Dover Publications, Inc. (Original work published 1908)
9. Rubenstein, R. N. (1998). Historical algorithm. In L. J. Morrow \& M. J. Kenney (Eds.), The teaching and learning of algorithms in school mathematics (pp. 99-105). Reston, VA: The National Council of Teachers of Mathematics, Inc. 11. Saraswathy Nataraj, M., \& Thomas, M. O. (2006). Expansion of binomials and factorization of quadratic expressions: Exploring a Vedic method. Australian Senior Mathematics Journal, 20(2), 8-17.
10. Sgroi, L. (1998). An explanation of the Russian peasant method of multiplication. In L. J. Morrow \& M. J. Kenney (Eds.), The teaching and learning of algorithms in school mathematics (pp. 81-85). Reston, VA: The National Council of Teachers of Mathematics,

$$
\begin{aligned}
& \text { نتيجدكيرى } \\
& \text { ضرب يكـ مهارت پایه رياضى اســـت، و درك فرايند } \\
& \text { و بيشـــتر كاربردهاى آن اصل مهممى براى موفقيت آينده } \\
& \text { دانشآموزان امروزى است. با توجه به رشد بالاى آموزش، }
\end{aligned}
$$

$$
\begin{aligned}
& \text { براى آموزش را ياد بگيرند. آموزشگران بايد بهطور گسترده }
\end{aligned}
$$

$$
\begin{aligned}
& \text { دانشآموزان، در كلاس درس را داشته باشند. پزوهشهـا } \\
& \text { نشــان داده زمانى كـــه روشها و راهبردهـــاى گوناگون } \\
& \text { حل مســئله به كودكان معرفى مىشود، توانايى هاى حل } \\
& \text { مسئله در آنها مبتكرانه و منعطفتر مىشود (NCTM، }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ايدههاى رياضى اطلاعات به دســـت مى آورند به احـار احتمال } \\
& \text { زيـــاد آنها رياضى را بهعنوان نظم روبه رشـــــــى در نظر } \\
& \text { خواهند گرفت، در حالى كه ديگران از آن بهعنوان روش } \\
& \text { مؤثر در محاسبـه مسائل پییییده استفاده مى كنند. } \\
& \text { پینوشتها } \\
& \text { 1. West, Lynn. (July 2011). University of Bellevue, Nebras- } \\
& \text { ka. Unpublished MA thesis. } \\
& \text { 2. Princeton University Wordnet } \\
& \text { 3. long Multiplication } \\
& \text { 4. Multiplicand } \\
& \text { 5. Multiplier } \\
& \text { 6. Finger Multiplication } \\
& \text { 7. Rouse Ball } \\
& \text { 8. Area Model of Multiplication } \\
& \text { 9. Distributive Property } \\
& \text { 10. Commutative Property } \\
& \text { 11. Visual Learners } \\
& \text { 12. Lattice Multiplication } \\
& \text { 13. Sieve Multiplication } \\
& \text { 14. Jalousia (Gelosia) } \\
& \text { 15. Carroll \& Porter } \\
& \text { 16. Regrouping }
\end{aligned}
$$

[^0]: مسئله را بر اساس توانهايى از r، بازنويسى كنيد:

